Heavy Neutral Leptons at the Electron-Ion Collider

Brian Batell University of Pittsburgh

with T. Ghosh, T. Han, K. Xie, to appear

NF03 Kickoff Meeting September 17, 2020

Introduction and Motivation

- The EIC is a new U.S. DOE funded accelerator facility to be located at Brookhaven National Laboratory.
- The EIC will collide polarized electrons with polarized protons and ions over a wide range of energies and with high luminosities (10 1000 times HERA).
- The primary goals of the EIC are to elucidate nuclear structure, including:
 - 3D tomographic imaging of partonic substructure
 - Precise determination of quark and gluon contributions to proton spin
 - Exploration of novel phases of nuclear matter at high densities
- Given the substantial investment and promising capabilities of this facility, it is clearly of interest to consider what additional physics opportunities may be exist.
- Here we consider the capability of the EIC to probe physics beyond the Standard Model, taking the case of new Heavy Neutral Leptons as a case study.

The Electron-Ion Collider (EIC)

• We will focus on electron - proton collisions:

$$e(20 \, {\rm GeV}) + p(250 \, {\rm GeV}), \ \sqrt{s} = 140 \, {\rm GeV}$$

- Assume integrated luminosity of $\mathcal{L}=200\,\mathrm{fb}^{-1}$
- Primary physics goals require a multi-purpose Hermitic detector with excellent tracking resolution and particle ID capabilities over a broad momentum range
- Detector still under design; see EIC Detector Requirements R&D Handbook:

http://www.eicug.org/web/sites/default/files/EIC_HANDBOOK_v1.2.pdf

η	Resolution		
Tracking (σ_p/p)			
$2.5 < \eta \le 3.5$	$0.1\% \times p \oplus 2\%$		
$1.0 < \eta \le 2.5$	$0.05\% \times p \oplus 1\%$		
$ \eta \le 1.0$	$0.05\% \times p \oplus 0.5\%$		
Electromagnetic calorimeter (σ_E/E)			
$-4.5 \le \eta < -2.0$	$2\%/\sqrt{E}$		
$-2.0 \le \eta < -1.0$	$7\%/\sqrt{E}$		
$-1.0 \le \eta \le 4.5$	$12\%/\sqrt{E}$		
Hadronic calorimeter (σ_E/E)			
$1.0 < \eta \le 3.5$	$50\%/\sqrt{E}$		
$ \eta \le 1.0$	$100\%/\sqrt{E}$		

Recolution

Heavy Neutral Leptons at the EIC

- HNLs motivated by potential connections to neutrino mass generation
- Lagrangian, Interactions

$$-\mathcal{L}\supset y_{
u}^{iI}\,L_{i}\,HN_{I}+\mathrm{H.c.}$$

$$\mathcal{L} \supset y_{
u}^{iI} \, L_i \, H N_I + \mathrm{H.c.}$$
 $\mathcal{L} \supset rac{g}{\sqrt{2}} U_{iI} W_{\mu}^- \, \ell_i^\dagger \, \overline{\sigma}^\mu N_I + rac{g}{2 \, c_W} U_{iI} \, Z_\mu \,
u_i^\dagger \, \overline{\sigma}^\mu N_I + \mathrm{H.c.}$

HNL production

HNL decays, lifetime

Prompt HNL Searches

- HNLs decay promptly for larger masses/mixing angle strengths
- Focus here on lepton number violating signature e^+jjj :

$$e^-p \to Nj \to (e^+jj)j$$

- Hadronic mode allows for full final state reconstruction
- Main SM background: neutral current processes with e- misidentified as e+
- e^+jj invariant mass, lepton pseudo-rapidity, jet transverse momentum provide efficient discrimination
- Order I I0 background events after all cuts, depending on mis-identification rate

Cut selection	Signal		o= i i i
	$m_N = 10 \text{ GeV}$	$m_N = 50 \text{ GeV}$	e^{-jjj}
	[pb]	[pb]	[pb]
Production	5.53	0.95	449
Exactly 1 ℓ :	2.43	0.74	36.7
$p_{T_{\ell}} > 2 \text{ GeV}, \ 0 < \eta_{\ell} < 3.5$			
Exactly 3j:	0.84	0.43	1.30
$p_{T_{j_1}} > 20 \text{ GeV}, p_{T_{j_{2,3}}} > 5 \text{ GeV}, \eta_{j_{1,2,3}} < 3.5$			
Isolation:	0.52	0.41	1.30
$\Delta R(\ell, j_{1,2,3}) > 0.4$			
$\min (M(\ell j_{\alpha}j_{\beta}) - m_N) < 5 \text{ GeV } (\alpha, \beta = 1, 2, 3)$	0.52	×	4.31×10^{-2}
	×	0.33	0.59
Require one e^+ [$f^{\text{MID}} = 0.1\%$]	0.52	×	4.31×10^{-5}
	×	0.33	5.93×10^{-4}
Require one e^+ [$f^{\text{MID}} = 0.01\%$]	0.52	×	4.31×10^{-6}
	×	0.33	5.93×10^{-5}

Displaced HNL Searches

- HNLs are long lived for smaller masses/mixing angle strengths
- Focus here on signature of displaced lepton with large transverse impact parameter
- Event selection loose (tight) cuts:
 - HNL decay within cylinder of length 2m, radius 40cm
 - At least one lepton with:
 - pT > I GeV (5 GeV)
 - Transverse impact parameter > 2mm (2cm)
 - Jet at primary vertex must have p_T > 5 GeV (10 GeV)
- Main SM background expected to arise heavy flavor decays - currently under investigation
- We will show EIC sensitivity to 5 signal events
- Additional handles can come from displaced vertices

EIC Sensitivity

- EIC can explore new parameter space beyond current bounds
- Can improve by up to one order of magnitude in squared mixing angle at low masses ~ 5 GeV
- Potential to extend beyond existing limits at high masses
- Other experiments can probe HNLs in these mass ranges - see e.g., Physics Beyond Colliders report, arXiv:1901.09966

Outlook

- The EIC will open up a new QCD frontier. It is also interesting to ask if BSM physics can be explored at the EIC.
- We have found the EIC has the potential to search for HNLs, particularly in the few GeV mass range
- Studies of this kind can inform EIC detector design (e.g., tracking system for displaced particle searches).
- It would be worth exploring other BSM physics cases:
 - new light particles in I-100 GeV range
 - SMEFT interactions [Boughezal, Petriello, Wiegand, 2004.00748]
 - lepton flavor violation [Gonderinger, Ramsey-Musolf, 1006.5063]
 - precision EW physics [Kumar et al., 1302.6263]
- It is very early days for the EIC. There is much room for exploration!